Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction
نویسندگان
چکیده
Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x1, . . . , xm for the equation s = gcd (s1, . . . , sm) = x1s1 + · · · + xmsm, where s1, . . . , sm are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.
منابع مشابه
Preconditioning of Rectangular Polynomial Matrices for Eecient Hermite Normal Form Computation
We present a Las Vegas probabalistic algorithm for reducing the computation of Hermite normal forms of rectangular polynomial matrices. In particular, the problem of computing the Hermite normal form of a rectangular m n matrix (with m > n) reduces to that of computing the Hermite normal form of a matrix of size (n + 1) n having entries of similar coeecient size and degree. The main cost of the...
متن کاملLie Invariants in Two and Three Variables
We use computer algebra to determine the Lie invariants of degree ≤ 12 in the free Lie algebra on two generators corresponding to the natural representation of the simple 3-dimensional Lie algebra sl2(C). We then consider the free Lie algebra on three generators, and compute the Lie invariants of degree ≤ 7 corresponding to the adjoint representation of sl2(C), and the Lie invariants of degree ...
متن کاملLecture : Integer Programming , Spring 2010
2 Euclidean Algorithm and Hermite Normal Form 9 2.1 Sizes of Rational Numbers and Polynomial Complexity . . . . . . . . . . . . 9 2.2 Computing the GCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Computing the Hermite Normal Form . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Lattices and the Hermite Normal Form . . . . . . . . . . . . . . . . . . . . . 15 2.5 Dual ...
متن کاملApproximate Polynomial GCD over Integers with Digits-wise Lattice
For the given coprime polynomials over integers, we change their coefficients slightly over integers so that they have a greatest common divisor (GCD) over integers. That is an approximate polynomial GCD over integers. There are only two algorithms known for this problem. One is based on an algorithm for approximate integer GCDs. The other is based on the well-known subresultant mapping and the...
متن کاملPractical algorithms for constructing HKZ and Minkowski reduced bases
In this paper, three practical lattice basis reduction algorithms are presented. The first algorithm constructs a Hermite, Korkine and Zolotareff (HKZ) reduced lattice basis, in which a unimodular transformation is used for basis expansion. Our complexity analysis shows that our algorithm is significantly more efficient than the existing HKZ reduction algorithms. The second algorithm computes a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 8 شماره
صفحات -
تاریخ انتشار 1998